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Abstract

Ruby is a dynamic programming language that was first
released in 1995 and remains heavily used today. Ruby un-
derpins Ruby on Rails, one of the most widely deployed web
application frameworks. The scale at which Rails is deployed
has placed increasing pressure on the underlying CRuby
implementation, and in particular its approach to memory
management. CRuby implements a mark-sweep garbage col-
lector which until recently was non-moving and only al-
located fixed-size 40-byte objects, falling back to malloc to
manage all larger objects. This paper reports on a multi-
year academic-industrial collaboration to rework CRuby’s
approach to memory management with the goal of introduc-
ing modularity and the ability to incorporate modern high
performance garbage collection algorithms. This required
identifying and addressing deeply ingrained assumptions
across many aspects of the CRuby runtime. We describe the
longstanding CRuby implementation and enumerate core
challenges we faced and lessons they offer.

Our work has been embraced by the Ruby community,
and the refactorings and new garbage collection interface
we describe have been upstreamed. We look forward to this
work being used to deploy a new class of garbage collectors
for Ruby. We hope that this paper will provide important
lessons and insights for Ruby developers, garbage collection
researchers and language designers.

CCS Concepts: « Software and its engineering — Garbage
collection; Software design tradeoffs; Runtime environ-
ments; Interpreters; Scripting languages.
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1 Introduction

Yukihiro (Matz) Matsumoto first started work on the Ruby
language in 1993 before publicly releasing it in 1995. It is
a dynamically typed, garbage collected scripting language
influenced by Lisp and Smalltalk among other languages. At
a time where computational efficiency was an increasing
concern, Matsumoto took a different path, creating a lan-
guage “focussed on developer experience, happiness, and
productivity” [13]. There are multiple implementations of
the language, but the primary one is the one that continues
to be led by Matsumoto, often referred to as CRuby [10].

In 2004, David Heinemeier Hansson released Ruby on
Rails (a.k.a. ‘Rails’), a server-side web application framework
built on Ruby. This framework rapidly gained popularity
and today is used by many large web sites including GitHub,
Airbnb, Twitch, and Shopify. Thus the language which Mat-
sumoto initially designed with a focus on “developer experi-
ence and happiness” now plays a critical role in the engine
room of today’s online economy. This need to run Rails ef-
ficiently at scale has driven major efforts targeting Ruby’s
performance, including the development of the YJIT just-in-
time compiler [6, 7] and it is the motivation for the project
we describe here.

Ruby’s original garbage collector was unusual in a num-
ber of ways. As an example, for simplicity, all Ruby objects
were managed in fixed sized, 40-byte slots called RVALUEs.
When an object didn’t fit within an RVALUE, additional space
would be allocated via malloc with an indirection left in the
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RVALUE. While this choice greatly simplified the garbage col-
lector implementation, it came with notable performance
implications including internal fragmentation, poor locality,
and runtime overheads associated with calls to malloc and
free. The collector was also non-moving (partly because it
could afford to be since external fragmentation is much less
a concern with uniformly sized slots). As with many design
decisions, these choices were embraced and then increas-
ingly depended upon within the runtime and the developer
community. For example, since objects did not move, it was
reasonable to allow native code to directly access the Ruby
heap, even when the collector was running. As long as the
native code did not modify pointers while the collector was
tracing, the addition of this liberty was not an imposition on
the Ruby garbage collector.

The overarching goal of this project is to improve the
performance of CRuby through better garbage collection.
However, we chose neither to make incremental improve-
ments to the existing collector nor replace it. Instead, we
adopted the more ambitious goal of refactoring CRuby to
support pluggable garbage collectors, with the existing col-
lector co-existing alongside a selection of alternatives. This
objective requires both factoring out a coherent interface,
and factoring out decades of assumptions that pervade the
runtime and its relationship to memory management.

We have worked closely with the Ruby core team and
were able to successfully integrate our major refactoring into
Ruby 3.4 at the end of 2024. We have used the MMTk garbage
collection framework [3, 9] as a target and are able to choose
among multiple MMTk collectors. Specifically, we target the
new Rust-based version of the MM Tk framework [9] which is
designed to be host-language agnostic. This work is ongoing,
as we seek to broaden the capabilities of this refactoring
to eventually support the integration of high performance
collectors such as LXR [25] into Ruby.

Such a major refactoring to a complex, decades-old code
base is time consuming, disruptive, and expensive. We be-
lieve that its success marks a significant step forward for the
Ruby codebase and provides a clear pathway to improved
memory management performance in Ruby. We hope that
this paper will be helpful to garbage collection experts, lan-
guage implementors, and Ruby developers alike.

2 Background

We now provide a very brief overview of the CRuby runtime
and MMTk.

2.1 CRuby

CRuby executes Ruby programs mainly with its interpreter.
Since the 2.6 release it introduced several experimental JIT
compilers. We omit discussion of JIT compilers in this paper,
although we plan to optimize for them in the future.

As the name suggests, the CRuby runtime is mainly im-
plemented in C, and third-party Gems (packages) may have
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components written in C, too. Object layouts can be defined
by C structures, and methods can be implemented using
C functions. Unlike the Java Native Interface (JNI), which
exposes opaque handles and API functions to C programs,
CRuby methods implemented in C can hold direct pointers to
objects in the GC heap using VALUE, the tagged union type of
references and non-reference values. This design choice ne-
cessitates the use of conservative stack scanning and object
pinning during GC. It also poses the danger that undisci-
plined third-party Gems can directly access the GC heap in a
native thread without holding the global interpreter lock (see
Section 4.1), racing with the GC and corrupting the heap.
CRuby started with a simple mark-sweep collector where
all objects are 40 bytes in size. Any object that needed more
than 40 bytes of space had to allocate extra memory with
malloc. CRuby versions 2.1.0 and 2.7.0 introduced genera-
tional and copying GC, respectively. Version 3.2.0 introduced
Variable-width Allocation (VWA) which mitigated the object
size limit by introducing a number of fixed sizes [26]. How-
ever, despite the continued development effort, some prim-
itive types in CRuby are still not aware of generational or
copying GC, and the object size limitation still negatively in-
fluences parts of the VM design. Each of these aspects of the
CRuby runtime posed significant challenges for our project.

2.2 MMTk

The focus of this paper is refactoring the CRuby runtime
to support third-party garbage collectors. For concreteness,
we use MMTk as our target. However, our refactoring is not
specific to MMTk.

MMTk [3] was originally part of JikesRVM [1], an ex-
perimental metacircular Java Virtual Machine. MMTk was
designed as a highly modular, VM-neutral framework for
rapidly building high performance garbage collectors. More
recently, MMTk was reimplemented in the Rust program-
ming language [9]. MMTk currently includes multiple garbage
collection algorithms, including canonical collectors such as
NoGC, MarkSweep, MarkCompact, Immix and SemiSpace,
as well as more performant collectors such as Genlmmix and
StickyImmix.

MMTk implements a strongly language-neutral core, and
enforces that neutrality through well-defined compiler-en-
forced interfaces. To integrate MMTk into a VM, the devel-
oper needs to implement a two-way binding between the
MMTk core and the VM. One half of the binding is a log-
ical extension of MMTK, specialized to the target runtime,
efficiently performing language-specific operations such as
scanning stacks and objects. The other half of the binding
is a logical extension of the target runtime, specialized to
MMTK, efficiently performing collector-specific operations
such as allocation and write barriers. Our system thus has
four major components: the CRuby runtime, MMTk, and the
two halves of the binding. This paper describes the issues we
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encountered as we generalized and factored out GC-related
code and assumptions within the CRuby runtime.

3 Objective

The objective of this work is to refactor and modularize
CRuby’s memory manager so as to make it possible to use
third party memory managers alongside CRuby’s original
memory manager. This objective embodies a number of (im-
plicit) requirements:

R1 We want to have this work integrated into the main-
line CRuby codebase, which implies that we must fol-
low the norms of the existing codebase, ensure our
changes are minimally invasive, ensure our changes
respect Ruby semantics, and ensure that Ruby’s per-
formance and functionality is in no way degraded by
our changes.

R2 We need to retain support for CRuby’s existing garbage
collector without any performance regression.

R3 We want to allow the integration of various third-party
garbage collectors, rather than one specific garbage
collector.

R4 We want to support copying garbage collectors, which
means that we have to identify and respond to all
assumptions of a non-moving collector, throughout
the code base.

Engineering-wise, we approached our goal in small steps:

1. We started with NoGC, a trivial ‘collector’ that allocates
but does not collect, similar to OpenJDK’s Epsilon [22].
NoGC routes all heap allocations to the third-party
GC, but never collects garbage. This helped identify
the allocation interface of the VM.

. We then added support for non-copying GC. We ex-
tracted the interface for synchronizing GC threads
with mutators, and identifying roots and object fields.

. We then added support for copying GC. We ensured
that reference forwarding and object pinning worked
in this step.

. We finally added support for generational GC. We sup-
ported write barriers, and also addressed the unique
challenge of write-barrier-unprotected (WB-unprotected)
objects in this step.

Concretely, we targeted MMTKk’s Immix and Stickylmmix [4]
as examples of copying and generational algorithms, respec-
tively. Both support object pinning, which is required by
CRuby due to conservative stack scanning and the presence
of fields that cannot be updated during copying GC.

4 Challenges and Lessons

We now outline major challenges that we faced as we worked
toward our goal of modularizing CRuby’s memory manager
with the objective of third party integration.

111

ISMM °25, June 17, 2025, Seoul, Republic of Korea

4.1 Yielding for Collection

Most garbage collection algorithms require the program (mu-
tator) to come to a complete stop, even if briefly, so that the
collector can coherently establish runtime roots. We needed
to expose this functionality to third party collectors.

Challenge 1. Stopping all threads of execution at a coherent
point in order to perform a collection.

This task was one of the easier elements of the refactor-
ing. CRuby has traditionally relied on a global interpreter
lock (GIL), which simplifies many aspects of the runtime
implementation by providing a single global synchroniza-
tion mechanism. This makes it straightforward to ensure
mutator-collector synchronization. By contrast, runtimes
without a GIL often implement quite sophisticated mech-
anisms to ensure all mutator threads yield to the collector
without inducing significant overhead [17].

In 2020, CRuby 3.0 introduced Ractors, an actor-model
abstraction that introduces true parallelism, mitigating the
limitations of the GIL. Ractors run concurrently to one an-
other, but threads within a given Ractor do not exhibit true
concurrency. Ruby’s still uses a single GIL that pauses all
Ractors. We were able to expose this mechanism to our third
party heap API without difficulty.

Lesson 1. CRuby’s relatively simple concurrency model and
use of the GIL makes it straightforward to yield all mutators
for a collection.

4.2 Conservative Stack Scanning

Stacks are part of the runtime execution state that may refer-
ence the heap, so collectors must consider them as roots. In
CRuby, there are two kinds of stacks: i) Ruby stacks which
hold Ruby local variables, and ii) native stacks which support
both the Ruby runtime and third-party extension modules.

Challenge 2. The collector must identify and treat as roots
all references from stacks, including native stacks.

While Ruby stacks are easy to scan, native stacks are more
tricky because local variables in C programs may hold direct
pointers to heap objects, and C compilers do not generate
stack maps to identify the offsets at which local variables
are held on the stack.

In the GC literature, words on the stack that may reference
heap objects are known as ambiguous references. Ambiguous
references have two important properties: i) since they may
be references, each ambiguously referenced object must be
conservatively kept alive, and ii) since they may be values
rather than references, they must not be changed, which
implies that the referent may not be moved.

We found that it was not difficult to reuse CRuby’s default
GC’s existing conservative stack scanning, which made this
challenge relatively easy to address. CRuby is able to iterate
through all words in stacks and saved registers and use a
filter to identify ambiguous references. This leaves two key
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functions for the GC to implement, namely: i) a test that
determines whether a word references a valid object within
the GC heap, and ii) a mechanism to pin ambiguously refer-
enced objects and report them as roots. Shahriyar et al. [21]
efficiently implemented conservative garbage collection in
the older Java version of MMTK, and we are able to follow
their approach in addressing each of these functions.

To determine whether a reference was valid, Shahriyar
et al. use an object map that encodes the location of all valid
heap objects in a bitmap. Rust MMTk had experimental sup-
port for this feature via a valid-object bit (VO-bit), so we
hardened this into a fully supported feature. When the fea-
ture is enabled, MMTk sets the relevant VO-bit each time an
object is allocated, and clears it when it considers the object
dead. Since a word on the stack can be a reference to a heap
object if and only if the VO-bit is set at that address, we can
use the VO-bit to filter candidate stack words.

To pin ambiguously referenced objects, Shahriyar et al.
set a pin bit in the object, which is respected during the col-
lection. They remember all pinned objects in a buffer, which
allows the pin bits to be cleared before the next collection
cycle. We abstract over the details of the pinning mechanism
and introduce a new class of roots to the GC interface which
we call pinning roots. Objects referenced from pinning roots
are pinned for the duration of the collection but otherwise
are treated like other root-referenced objects.

Although pinning semantics can’t be supported in strictly
copying collectors such as semi-space, they are trivially im-
plemented in non-moving collectors and are a feature of
opportunistic copying collectors, such as Immix [4] and
LXR [25]. We implement support for pinning roots by exploit-
ing the fact that Immix and other opportunistically copying
collectors use three states to reflect object visitation during a
trace: i) unmarked: the object is not yet visited, ii) forwarded,
the object was visited and moved, iii) marked, the object was
visited and not moved. Objects referenced by pinning roots
are simply marked, which has the effect of ensuring that the
object is not moved. Pinning roots must be processed before
other roots to ensure that the referenced object has not al-
ready been forwarded when visited during the processing of
pinning roots.

Lesson 2. CRuby’s existing support for stack scanning was
easy to reuse. However, native stacks require conservatism
which means collectors must provide mechanisms for identi-
fying valid heap objects and pinning ambiguously referenced
objects. The latter limits the choice of collectors to those that
can support pinning.

4.3 Object Scanning

One of the most fundamental mechanisms for any garbage
collection implementation is the discovery of pointers within
each object. This is necessary for tracing, in order to perform
a transitive closure over the heap graph, and for reference
counting, in order to perform recursive decrements. Because
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it may be executed millions of times in a single garbage
collection, it is also one of the most performance-critical
mechanisms in a garbage collector. The mechanism requires
intimate coordination between the collector and the run-
time, since the location of the pointers within any object is
a function of the language implementation.

Challenge 3. The collector must be able to efficiently identify
each of the pointer fields within each heap object.

Classic implementations of object scanning include: i) us-
ing a compiler-generated pointer map for each type, ii) us-
ing pointer tagging to differentiate pointer fields from non-
pointer fields, and iii) performing a conservative scan of the
heap object, akin to conservative stack scanning.

CRuby took another approach. Each Ruby type must im-
plement its own marking code. For built-in types, this is
gc_mark_children(), while for third-party types, the devel-
oper implements rb_data_type_t, which has a dmark func-
tion pointer which points to the developer’s implementa-
tion of the marking routine. When compaction was intro-
duced in Ruby 2.7.0, the design was extended to include
gc_update_object_references() and dcompact for built-in
and third-party types respectively. The marking function
ensures that each of the object’s children are marked, while
the compact function ensures that each of the object’s chil-
dren are relocated if necessary and that the objects’ pointers
to its children are updated accordingly.

CRuby provides developers with a lower level API for
mark and compact semantics, including rb_gc_mark (), which
marks and pins, rb_gc_mark_movable(), which marks, and
rb_gc_location(), which relocates. Listing 1 illustrates how
a type Foo implements marking and compacting functions
in terms of these primitives.

While this design gives the implementers of third-party
types freedom to implement type-specific object scanning
code, even for non-standard types, it exposes the specifics of
CRuby’s garbage collector design into every type implemen-
tation, including each third-party type. For the set of collec-
tors we initially target, we were able to re-direct rb_gc_mark
(), rb_gc_mark_movable(), and rb_gc_location() to the un-
derlying GC implementations in such a way as to correctly
achieve object scanning. Although this is workable, our goal
is to provide an abstract GC interface capable of supporting
multiple GC algorithms, so this approach presents a problem.

We have begun addressing this by introducing declarative
marking to CRuby. Instead of providing a marking func-
tion and a compacting function, a type can provide a list of
offsets of reference fields (of VALUE type). This list can be con-
veniently constructed using a macro, as shown in Listing 2.
At the time of writing, CRuby only uses declarative marking
for the enumerator type. This approach solves the problem
of embedding the semantics of a single GC in the type dec-
larations, but it does not address the fact that the CRuby
marking and compacting code could (and sometimes does)
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1 struct Foo {

2 struct RBasic basic;

3 VALUE field1l; // non-pinning

4 VALUE field2; // pinning

5 bool status;

6 VALUE field3; // conditional

7 %

8

9 void

10 foo_mark(struct Foo *obj) {

11 rb_gc_mark_movable(obj->field1);

12 rb_gc_mark(obj->field2);

13 if (obj->status) {

14 rb_gc_mark_movable(obj->field3);
15 3}

16 3}

17

18 void

19 foo_compact(struct Foo *obj) {

20 obj->fieldl = rb_gc_location(obj->field1);
21 if (obj->status) {

22 obj->field3 = rb_gc_location(obj->field3);
23 3}

24}

Listing 1. Example of CRuby’s field visitors for mark-
ing and compacting. Fields of type VALUE may contain
references to objects. rb_gc_mark marks and pins an ob-
ject. rb_gc_mark_movable marks object without pinning, al-
lowing the GC to move the object during compaction.
rb_gc_location returns the new location of an object if it is
moved by the GC. field1 and field3 are examples of fields
that don’t pin their referents, while field2 pins its referent.
field3 only contains object reference if the status field is
true.

implement type-specific semantics such as a decision to pin
a child field, as in Listing 1. Declarative marking happily
co-exists with CRuby’s old approach so it can be incremen-
tally introduced, allowing on-going support for legacy code.
This change makes CRuby more maintainable and allows it
to integrate other GC implementations with less difficulty.
Fully reflecting such semantics in CRuby in a GC-agnostic
way remains future work.

Lesson 3. CRuby’s reliance on hand-written per-type mark
and compact functions has the side-effect of exposing algorithm-
specific GC semantics to developers through type declarations,
which makes a change of GC algorithm difficult. Lifting this
abstraction is all the more challenging since third-party types
encapsulate these semantics, so any change affects all third-

party types.
4.4 Reference Enqueuing

A side effect of CRuby’s reliance on type-provided mark-
ing code is dependence on its field visitors, rb_gc_mark(),
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1 struct enumerator {

2 VALUE obj;

3 ID meth;

4 VALUE args;

5 VALUE fib;

6 VALUE dst;

7 VALUE lookahead;

8 VALUE feedvalue;

9 VALUE stop_exc;

10 VALUE size;

11 VALUE procs;

12 rb_enumerator_size_func *size_fn;

13 int kw_splat;

14 3

15

16  RUBY_REFERENCES(enumerator_refs) = {

17 RUBY_REF_EDGE (struct enumerator, obj),

18 RUBY_REF_EDGE (struct enumerator, args),

19 RUBY_REF_EDGE (struct enumerator, fib),

20 RUBY_REF_EDGE (struct enumerator, dst),

21 RUBY_REF_EDGE (struct enumerator, lookahead),
22 RUBY_REF_EDGE (struct enumerator, feedvalue),
23 RUBY_REF_EDGE (struct enumerator, stop_exc),
24 RUBY_REF_EDGE (struct enumerator, size),

25 RUBY_REF_EDGE (struct enumerator, procs),

26 RUBY_REF_END

27 %

Listing 2. An example of declarative marking. This snippet is
taken from the source code of CRuby. Instead of visiting fields
using C functions, we simply list reference fields using the
RUBY_REF_EDGE macro. GC will use this list to find reference
fields, mark the children, and update the fields if the referents
are moved.

and rb_gc_mark_movable() (Section 4.3 and Listing 1). These
visitors each take the address of the referent (child) as their
argument (e.g. Section 4.3 of Listing 1). This is adequate for
a simple mark, however if the collector were to move the
referent, it would need to have the address of the referring
field so that it could update the field with the referent’s new
location.

CRuby deals with movement by first calling the function
rb_gc_mark_movable() and then, later in the collection, call-
ing rb_gc_location(), which returns the new location of an
object, if it was moved. On the other hand, some GCs ex-
pect to be passed the address of the referring fields (slots),
which allows the collector to directly update the field if and
when it moves the referent (see the taxonomy in Figure
5.1 of Atkinson [2]). In fact, by default, MMTk implements
what Atkinson’s taxonomy refers to as Edge-Slot enqueuing,
which means that there is a queue entry for every edge in
the object graph, and that edge is represented by a pointer
to the field that holds the edge [12]. The fact that CRuby’s
field visitors don’t expose the addresses of the fields to the
collector therefore creates a problem.



ISMM °25, June 17, 2025, Seoul, Republic of Korea

Challenge 4. Reconcile the unavailability of field addresses
in CRuby with underlying collectors’ needs for field addresses.

We added support for Node-ObjRef enqueuing [2] to the
MMTKk core to complement its existing Edge-Slot enqueuing,.
The new API allows the VM binding to choose, at the time of
scanning an object, whether to enqueue the addresses of its
fields, or to directly trace the children referenced by its fields.
This allows us to route MMTK’s object-scanning callback to
the marking functions of CRuby’s types (such as foo_mark),
and route CRuby’s field visitors (such as rb_gc_mark) back
to MMTK’s object-tracing function.

The addition of Node-ObjRef allows the object graph to
be traversed, but does not directly solve the problem of how
fields are updated in the case when an object is moved. In
our current implementation, each time an object is scanned,
its fields are first marked (e.g. rb_gc_mark), and are then im-
mediately updated (rb_gc_location()), just as CRuby does.

Lesson 4. CRuby’s approach to scanning objects reflects its
history and the fact that originally it only marked objects.
Generalizing this approach will be important in the future. For
now we have generalized MMTk to work with such limitations.

4.5 Finalization and Off-Heap Memory

Finalizers are operations performed when an object is deter-
mined to be unreachable by the garbage collector. In CRuby,
there are two forms of finalizer, namely: i) the obj_free func-
tion, and ii) operations registered by the define_finalizer
function of ObjectSpace. We will focus on obj_free here, and
leave define_finalizer to Section 4.7.

Whenever an object in CRuby dies, the obj_free function
is called to allow clean up of underlying resources associated
with the object, such as file descriptors. A crucial use of
obj_free is freeing off-heap memory allocated by malloc.

As mentioned previously, historically the CRuby heap only
supported 40-byte slots [27]. When an object larger than 40
bytes was created, CRuby used malloc to allocate an off-heap
buffer in order to accommodate the object, leaving a pointer
to the off-heap buffer within the 40-byte heap object. When
such an object dies, CRuby uses the obj_free function to free
the off-heap buffer. Variable-width allocation introduced in
CRuby 3.2.0 [26] allows objects up to 640 bytes, mitigating
the problem but not solving it.

While finalization is a feature of many garbage collected
languages, the use of a finalizer is typically the exception
rather than the rule. However, because most objects in Ruby
are instances of types that may have an off-heap buffer,
nearly every Ruby object is subject to this form of finaliza-
tion, which is expensive. While CRuby’s collector must visit
every dead object, most high performance collectors exploit
the weak generational hypothesis [16, 23], and only visit
live objects. This aspect of CRuby’s finalization therefore
significantly undermines performance objectives of modern
collectors.
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Table 1. The cost in milliseconds of freeing 100,000,000 X
32 B objects as a function of malloc library implementation
and the number of threads freeing the objects. Only mimal-
loc offers any scalability; the others scale negatively as the
number of threads grows.

threads  glibc jemalloc tcmalloc mimalloc
1 1,263 3,935 4,988 903

2 5,002 11,719 13,539 493

3 5,787 17,606 11,374 346

4 6790 22,478 17,295 265

5 8,058 17,785 291

6 7,473 19,227 243

10 9,400 23,350 230

100 11,260 24,195 228

Challenge 5. CRuby’s use of finalization on all objects makes
implementing performant garbage collectors challenging, since
it requires that every dead object be visited. This requirement
stands in the way of efficient collector design since most high
performance collectors are designed to avoid visiting dead ob-
jects, exploiting the weak generational hypothesis.

Unfortunately, there is a second significant consequence
of Ruby’s use of off-heap buffers — finalization does not
scale due to free not scaling. This is illustrated by the mi-
crobenchmark results shown in Table 1. Because CRuby’s
default collector and the finalization mechanism it embodies
is single-threaded, this performance problem is also masked
in CRuby. However, our goal is to support a range of garbage
collectors and to make the most of available hardware, so
scalability is a priority.

Challenge 5b. CRuby’s extensive need to deallocate off-heap
buffers creates a major performance bottleneck for parallel
garbage collectors.

One of our motivations for introducing a new garbage
collection interface to CRuby was that it might address limi-
tations of CRuby’s memory management such as the need
to augment heap objects with off-heap memory. However,
Ruby exposes many implementation details of its default GC
to the runtime, including object size limitations. Thus run-
time code designed for its default garbage collector must, for
now at least, continue to allocate and free off heap memory
for any object larger than 640 B, even when using a garbage
collector that does not have this limitation.

Nonetheless, we have explored how these challenges could
be addressed when using a GC that is not constrained this
way. We started by conducting a study of the most prolific
uses of off-heap buffers, and found that the built-in types
T_STRING, T_ARRAY, and T_MATCH are dominant. These support
the heavily-used String, Array, and MatchData types respec-
tively. Because these are built-in types we can, in principle
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at least, provide new implementations of these types in the
CRuby runtime that avoid off heap memory.

We introduced two new types: imemo:strbuf and imemo:
objbuf. In CRuby, IMEMO types are internal types, whose
instances reside in the garbage collected heap but cannot be
directly referenced from variables in Ruby programs. The
types we introduced are analogous to Java’s byte[] and
Object[] types; they are objects with a capacity field fol-
lowed by an array of capacity elements (char and VALUE,
respectively). We then refactored the T_STRING (String) and
T_ARRAY (Array) built-in types to use imemo: strbuf and imemo
:objbuf respectively rather than off-heap memory. We also
refactored the T_MATCH built-in type (MatchData) to use our
new imemo:strbuf and imemo:objbuf types.

This refactoring means that instances of String, Array, and
MatchData are all entirely heap-allocated, so no longer need
finalization. We can extend this optimization to other built-in
types that need finalization due to off-heap buffers, such as
T_HASH (for the Hash type) which also has many instances.
Ruby T_OBJECT instances (for ordinary classes defined in
Ruby code) may grow. When they do so, to retain referen-
tial integrity of the object, CRuby may need to allocate an
off-heap buffer to hold the additional fields. Because this
happens frequently, CRuby includes a mechanism named
object shapes that can predict the eventual size of objects,
avoiding the need for off-heap allocation during growth. This
predictor works so well that in practice, we found that very
few instances of T_OBJECT ever require off-heap buffers.

We were able to demonstrate that the problem of finaliza-
tion due to off-heap memory allocations could be addressed
very effectively with limited effort by introducing the imemo
:strbuf and imemo:objbuf types. However, our approach is
contingent on the memory manager not being limited to
640 B heap allocations, thus it is currently incompatible with
CRuby’s default memory manager and therefore has not
been upstreamed to CRuby.

Lesson 5. Early choices such as fixed cell sizes can lead to
costly practices such as the systematic use of off-heap mem-
ory becoming deeply embedded in the runtime and even the
language. This leads to a vicious cycle by making it hard for
the language to retreat from the original decision, locking a
language into severely limiting design choices [15].

4.6 Copying Garbage Collection

The performance of any non-moving garbage collector is
ultimately limited by the spatial and temporal effects of frag-
mentation, which is inevitable. With the release of 2.7.0 at
the end of 2019, CRuby augmented its non-moving fixed-
size 40-byte mark-sweep collector with compaction, using
Edwards’ two-finger algorithm [18, 20].

The two-finger algorithm compacts regions of same-sized
objects by moving two ‘fingers’, one from each end of the
region. The top finger advances downward to the first occu-
pied cell, while the bottom finger advances upward to the
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first unoccupied cell. The cells are then ‘swapped’: the occu-
pied cell is moved to the unoccupied cell, and a forwarding
reference is left behind. This repeats until the fingers meet.
Once complete, all occupied cells will have been compacted
to the bottom of the space. Memory must then be scanned
to redirect pointers to objects which were moved, using for-
warding pointers. (The compaction algorithm was extended
to accommodate multiple fixed sizes when variable-width
allocation was introduced in CRuby 3.2.0 [26].)

Recall that historically, CRuby performed marking by hav-
ing each type implement the rb_gc_mark field visitor (List-
ing 1). As mentioned previously, the addition of compaction
led to the need for a rb_gc_location field visitor which could
be used to redirect pointers when objects were moved. How-
ever, because legacy C extensions may reference heap values
and may not be aware of the possibility of them moving,
CRuby needed a way to ensure that heap objects referenced
by C extensions would not be moved.

CRuby solved this by implementing pinning, and mak-
ing it the default, giving rb_gc_mark the semantics of pin-
ning the referent. Moving was thus implemented by adding
rb_gc_mark_movable which has the semantics of allowing the
referent to be moved. This way, types which can support
movable referents do so explicitly, by implementing the new
visitor, while legacy types are by default safe since without
the new visitor their references are implicitly pinned.

In addition to legacy C extensions, a second reason for
pinning is that certain object fields must be treated con-
servatively. For example, the field u3 in struct MEMO in the
CRuby runtime is an untagged union which sometimes holds
a reference, and sometimes holds an un-tagged integer in-
distinguishable from references. The u3 field is thus an am-
biguous reference, so must be treated conservatively and its
(potential) referent cannot be moved.

CRuby integrates this requirement for pinning into Ed-
wards’ two-finger compaction algorithm [20] by using three
steps: i) it performs a full trace of the heap to find and pin all
objects which must not be moved, ii) it uses the two-finger
algorithm to compact the space, and iii) it visits each object
in the heap to update references to objects that were moved.
However, for other garbage collection algorithms, this re-
quirement presents a problem, since in general the collector
cannot know whether a child will be pinned until all of its
parents have been visited.

Challenge 6. In the CRuby heap, a child can be pinned due
to the type of any of its parents.

As we saw above, this challenge is addressed by CRuby’s
default compacting collector by performing a complete trace
over the heap to find pinned children before moving any-
thing. A simple solution to the challenge would therefore
be to do the same for every moving collector that might be
integrated with CRuby, but this is unattractive due to is high
cost.
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Instead, we introduced the concept of potentially pinning
parents, or PPP for short. A potential pinning parent may
contain reference fields that cannot be updated. Because
those fields may contain nil or other non-reference values,
they do not always have children to pin (i.e. they potentially
pin their children). We record all PPP objects in a global list
so that at the beginning of a GC, the GC can iterate through
this list to identify all the children pinned by PPPs.

However, since the PPP iteration occurs before the GC, the
parent may in fact be unreachable, so marking each child
as live without knowing whether the parent was live would
be wasteful. We addressed this in our implementation by
separating pinning from liveness. Thus the PPP iteration
merely pins the referent; it does not mark it. Then during the
main trace, when a pinned object is reached it is left in place,
but unreached pinned objects are collected as usual. At the
end of each GC, live objects’ pinning bits must be cleared
and dead objects must be removed from the PPP list.

Fortunately, in CRuby, very few types are PPPs. Only some
IMEMO types and third-party T_DATA types are PPP types at
allocation. The Hash type only becomes PPP when it starts
using object identity as a hash code (which is a consequence
of not implementing address-based hashing which we will
discuss in Section 4.8). We are still working on reducing the
number of PPPs, and we should ultimately eliminate all the
unnecessary pinning inside the CRuby runtime.

However, we cannot change legacy third-party Gems (pack-
ages) built before CRuby 2.7.0. At the time of writing, even
some actively maintained Gems, such as nokogiri [8] and
json [11], still do not fully support moving GC. This means
that any garbage collector built for CRuby must support
fields that cannot be updated. Meanwhile, we expect that
third-party Gems that care about GC performance will start
to implement the updating functions or start using the declar-
ative marking mechanism we discussed earlier in Section 4.3.

Lesson 6. CRuby has fields that cannot be modified by the
collector, which complicates copying garbage collection since it
means that an object may only be moved once it is known that
the object is not referenced by any such field. We work around
this by introducing potentially pinning parents (PPP). However,
this constraint will continue to be a problem for CRuby if it
wishes to support legacy code unaware of moving GC.

4.7 Global Weak Tables

Weak tables reference heap objects without keeping the heap
objects alive. CRuby implements a number of weak tables
internally. For example, the generic instance variable table
maps objects to lists of instance variables, and is used to
hold instance fields for objects whose types are not derived
from BasicObject, Class or Module.! The finalizer table maps

In CRuby, when types not derived from BasicObject, Class or Module
are extended, additional fields are not simply included as part of the instance
as they are in other languages, but rather, are held in a large map within the
runtime, with the instance as the key and a list of field values as the value.
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objects to lists of user-defined finalizers registered by the
define_finalizer method of ObjectSpace. CRuby uses the
frozen string table to implement string interning and the
global symbol table to canonicalize symbols.

Once an object referenced by a weak table dies, the weak
table entry needs to be cleaned up to prevent a dangling ref-
erence. However, CRuby’s weak tables are not implemented
using Java-style weak references, which are automatically
cleared by the garbage collector. Instead, CRuby relies on
finalizers to clear references from the weak tables. Notice
that this implementation implies that since any object might
be referenced from one of these weak tables, all objects must
be finalized. This implies that the garbage collector must
visit every dead object, which works against any effort to
exploit the weak generational hypothesis [16, 23] (Lesson 5).

Complicating things further, CRuby implements lazy sweep-
ing to recover memory, which means that finalizers are not
invoked promptly. This in turn means that weak tables may
contain references to dead objects. CRuby mitigates this prob-
lem by having all accesses to these tables perform a check
for an invalid entry.

Challenge 7. CRuby’s reliance on finalizers to clean up weak
table entries rather than cleaning them automatically via the
garbage collector means that all objects are subject to finaliza-
tion, complicating the CRuby runtime.

We implemented a new method for cleaning up global
weak tables that does not rely on all objects being finalized,
and that is not performed lazily. Once the collector has fin-
ished identifying all live objects, it iterates over each weak
table, removing entries that point to dead objects, a task
that we trivially parallelize. Since this is done during GC,
mutators no longer need to check for dangling weak table
references. We successfully upstreamed this change.

At the time of writing, CRuby’s default GC uses this
new approach during compacting GCs, while ordinary non-
moving GCs still rely on finalization to remove entries. Third-
party GC modules, such as MMTXk, can use this new method
without making every object finalizable. We generalized
MMTK’s API, which previously only supported Java-style
weak references, to allow client VMs to implement the clean-
ing strategy we implemented in CRuby.

We also added a function rb_gc_mark_weak [28] to CRuby’s
default GC so that it now understands weak reference se-
mantics. This allows it to discover weak reference fields in
objects and process them after tracing. It was initially de-
signed for internal object fields in the CRuby runtime that
should have weak reference semantics, such as the reference
from a call cache to its callable method entry [5]. However,
at the time of writing, it is only used for the WeakMap class in
the standard library.

Lesson 7. Ifthe garbage collector does not support weak refer-
ence semantics, the VM is likely to resort to using a finalizer to
perform cleanup, harming performance and complicating the
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VM implementation. This is another example of how using a
simple GC implementation early in the life of a language may
have broader impacts on the design and healthy development
of a language runtime.

4.8 Hashing on Addresses

In CRuby, some weak tables, such as the generic instance
variable table and the finalizer table, use object identities
as the key. CRuby naively implemented an identity hash
by hashing the object address directly. It was not a problem
when CRuby was still using non-moving GC. However, when
moving GC happens, addresses of the key objects will change,
and such hash tables will have to be re-hashed.

CRuby’s default GC addressed this problem on an ad hoc
basis. For example, objects with finalizers registered with
ObjectSpace.define_finalizer are pinned so that the final-
izer table does not need rehashing. On the other hand, objects
with out-of-object instance variables are handled specially.
When the GC moves such an object, it removes the old entry
from the generic instance variable table, and re-inserts a new
entry with the new address as the key and keeps the old
value. In this way, the generic instance variable table only
contains valid entries after GC.

Challenge 8. CRuby uses object addresses as hash keys, which
requires rehashing when keys are moved.

When using MMTk, we reconstruct such weak hash tables
using forwarded references and replace the old hash table.
This approach is no more elegant than the default GC, but it
avoids pinning objects. It also avoids updating those thread-
unsafe hash tables when moving objects, which can happen
in parallel in multiple GC threads.

A standard algorithm for implementing identity hash code
in a moving GC is address-based hashing [1]. The first time
an object’s hash is taken, its address is returned as the hash
and a bit is set to indicate that the object has been hashed.
The first time the garbage collector moves a hashed object,
it allocates an extra word in which the hash value (its old
address) is stored, and a second bit is set to indicate that
the saved hash should be used in the future rather than the
object’s address. This approach requires two spare bits per
object. Ideally, these bits would be located in the object’s
header, but the current flags field does not have any free
bits to spare, so they would need to be implemented in side
metadata, imposing a 2/64 (3%) space overhead.

CRuby’s default GC makes address-based hashing diffi-
cult to implement because the addition of the extra word
in front of the object effectively changes the object’s shape,
unlike in other memory managers where the runtime need
not be aware of any space between objects or metadata in-
jected in front of them. Nonetheless, we are planning to add
address-based hashing into CRuby to eliminate the VM-wide
complexity of the identity hash.
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Lesson 8. The problem of hashing on object addresses is an-
other example of how deeply held assumptions of non-moving
garbage collection have extensive implications for a runtime,
making moving beyond such a simple collector very difficult.

4.9 Write Barriers and Generational Garbage
Collection

Generational garbage collectors avoid tracing mature objects,
but to do so, must conservatively treat all mature objects
as live, and remember all references from mature objects to
young objects.

Challenge 9. Generational collectors must be able to effi-
ciently identify references from mature objects to young ob-
jects.

Fortunately, CRuby already supports generational garbage
collection and implements write barriers for most field up-
dating operations. In the few cases where write barriers are
missing, CRuby identifies the parent objects as write-barrier-
unprotected (WB-unprotected) objects, which we discuss be-
low.

CRuby implements a variation on the classic object-re-
membering barrier [24]. The first time a reference field in
a mature object is modified, the object is remembered (by
setting a bit in a metadata table). During young genera-
tion garbage collection, fields of the remembered objects
are treated as roots, so all young objects transitively reach-
able from them are retained. As each mature object is pro-
cessed, the remembered bit is reset so that the object will be
remembered the next time it is modified.

This barrier is sufficiently general to support generational
garbage collection, so we were easily able to use it in our
MMTk port.”

As elaborated in Section 4.5, we replaced some malloc
buffers with IMEMO objects. For example, instances of imemo:
strbuf and imemo:objbuf are garbage collected objects, refer-
enced from String, Array and MatchData. We therefore need
to apply the write barrier when we assign such buffers to
their owners. Meanwhile, if the payload of an Array is held
in a child imemo:objbuf, write operations of array elements
must apply write barriers to the imemo:objbuf object instead
of the Array itself.

Lesson 9. The fact that CRuby had already inserted most
write barriers and the generality of CRuby’s object-remember-
ing barrier made integration with other generational collectors
fairly straightforward.

However, it was still necessary to deal with CRuby’s WB-
unprotected objects mentioned earlier.

%In the future, we will need to refactor CRuby’s use of array write barriers to
support more advanced GC algorithms, such as the concurrent LXR [25] col-
lector. That will affect a small part of the CRuby runtime, mostly involving
the implementation of Array.
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The idea of having objects that were not subject to write
barriers began as a pragmatic choice when making the ma-
jor change of introducing generational collection to CRuby.
CRuby 2.1.0 introduced generational GC (RGenGC), but
the code base was too large to insert write barriers every-
where at once. To allow write barriers to be introduced
gradually, CRuby objects were allowed to be either WB-
protected or WB-unprotected. Write operations to fields of
WB-unprotected objects may not apply write barriers, while
write operations to WB-protected objects must always apply
write barriers. The developers started with almost all types
being WB-unprotected, and gradually made more and more
types WB-protected.

Challenge 10. Identify references from mature objects to
young objects without using write barriers.

We adopt a simple strategy. At the start of each minor col-
lection, we conservatively treat all WB-unprotected objects
as if they had been modified during the preceding mutator
phase. We do this by simply keeping a list of all mature, live,
WB-unprotected objects and treating their fields as roots
into the young generation during minor collections. This
approach has the advantage of not requiring any change to
the collector being integrated.

Our approach is somewhat less complex than the handling
of WB-unprotected objects in CRuby’s default GC, which
involves: i) not promoting WB-unprotected objects into the
mature space, ii) adding WB-protected objects into the re-
membered set only when referenced by an old object, and
iii) demoting a mature object if it suddenly becomes WB-un-
protected (for example, after its interior pointer is leaked
to a C extension). We assume that this strategy emerged
because it began when the majority of all objects were WB-
unprotected, and keeping all WB-unprotected objects in the
remembered set was impractical. Nowadays, the number of
WB-unprotected objects is greatly reduced, and the overhead
of listing all WB-unprotected objects is no longer significant.

Unfortunately, it seems that CRuby will have some WB-
unprotected objects for the foreseeable future. Reference
fields can be leaked, unprotected by barriers, to third-party C
extensions by some public API functions, such as RARRAY_PTR.
Although strongly discouraged by the documentation, legacy
C extensions still use those legacy APIs, and access reference
fields without write barriers. This means CRuby must always
expect the presence of WB-unprotected objects if it wants to
maintain compatibility with such third-party C extensions.

Lesson 10. It was not hard to support WB-unprotected ob-
jects for third-party collectors by listing the fields of mature
WB-unprotected objects as roots during minor collections. The
fact that CRuby leaks reference fields, unprotected, to third-
party C extensions makes it impossible to make all objects
WB-protected.
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4.10 Performance Analysis

When integrating a third party collector, even if that collec-
tor is highly tuned, it may exhibit previously unseen perfor-
mance behaviors once integrated into a new runtime such
as CRuby. This may be for many reasons, including: i) work-
loads that run on CRuby have distinctly different profiles to
the workloads on which the collector was previously opti-
mized, ii) aspects of the CRuby language and runtime imple-
mentation lead to different bottlenecks and tradeoffs within
the collectors, or iii) because the integration with the CRuby
runtime is itself a bottleneck. Performance analysis and de-
bugging is therefore a first order concern when integrating
a third party collector.

Challenge 11. Quickly identify garbage collection perfor-
mance bottlenecks.

Our initial target, MMTK, offers very good eBPF-based
support for high fidelity performance analysis [14], com-
plementing traditional tools such as perf. MMTk performs
all work, both within its core and in the VM binding in
work packets, which execute work items as fine grained
as marking an object and as coarse grained as scanning a
stack. MMTk uses User Statically-Defined Tracepoints (US-
DTs) which allows the timing of each collection and every
work packet to be captured at very low overhead using the
bpftrace command line tool. Traces generated this way can
be directly imported into standard tools such as Perfetto [19],
enabling detailed fine-grained analysis. MMTK’s framework
is trivially extensible, allowing us to capture CRuby-specific
information, such as the number of objects finalized, and the
number of WB-unprotected objects processed.

For example, Figure 1 clearly illustrates that: i) calls to
obj_free dominate collection time, and ii) parallelizing the
finalization process makes the situation worse. Alarmingly,
this also told us that our goal of improving the GC algorithm
itself would not yield any noticeable performance benefit
as long as finalization remained a bottleneck. This, along
with confirmation via a microbenchmark made reducing the
number of objects that were finalized a very high priority
for our project (Section 4.5).

Lesson 11. A good performance analysis and visualization
tool is invaluable to the task of identifying bottlenecks and
optimization targets.

4.11 Performance Optimization

The overarching goal of this work was to allow CRuby to
use different garbage collectors, so that CRuby would have
alternatives in the face of limitations specific to its existing
collector. One such limitation is CRuby’s use of a free-list
allocator. Free list allocators suffer a significant performance
penalty compared to bump pointer allocators, which are
both simpler and offer better locality [4]. However, because
allocation is performance-critical, efficiently integrating a
new allocator into a runtime is not trivial.
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Figure 1. Understanding obj_free overheads and scalability using eBPF-based tracing tools, viewed through the Perfetto UL
These are time series plots, with time progressing on the x-axis, and garbage collector threads constituting the rows. Even
without understanding the details, both plots make it immediately visually obvious that obj_free (right, peach/dark green) is
far more costly than the full-heap trace (left, brown), dominating the cost of the collections. A comparison of the upper and
lower screenshots shows the alarming negative scalability of the obj_free operation, increasing from 40.5 ms to 61.9 ms when

parallelized (Section 4.5).

Challenge 12. Efficiently implement a new allocator in the
CRuby runtime. Allocator implementation is one of the most
performance-critical aspects of implementing a new garbage
collector.

Because they are performance-critical, most high perfor-
mance allocators are implemented using a fast path/slow
path pattern. The fast path is designed to as efficiently as
possible implement the common case for allocation, while
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the slow path manages complexity that arises less frequently,
such as replenishing a thread-local allocation buffer (TLAB)
from which the fast path allocates. For performance, the fast
path is typically inlined and contains no synchronization
and no calls other than a conditional call to the slow path.
MMTKk’s API exposes allocation fast and slow paths. This
design allows an initial non-performant implementation to
simply make a call to MMTk’s API implementation of the fast
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path, while an advanced implementation can re-implement
the fast path in the target runtime and call the API only for
the slow path.

CRuby mainly uses an interpreter, and implements most
primitive functions such as accesses to strings and arrays in
ahead of time compiled C code. It appeared at first glance
that object allocation should not have too much overhead
compared to the rest of the interpreter, but performance
analysis showed overheads of 3-4%, so we implemented the
bump pointer allocation fast path in C inside CRuby, calling
the API for the slow path.

Lesson 12. Despite being mostly interpreted, the performance
of the allocation fast path is still important for CRuby.

5 Future Work

The most important part of our work, namely refactoring the
runtime to implement and enforce a modular GC interface,
has been upstreamed. Nonetheless, there remains plenty to
be done by way of improving CRuby’s memory management.
Above all, incorporating better support for object movement
and greater opportunities for moving garbage collection is
essential. There are also many other secondary issues remain-
ing, which we have not touched on in this paper, including:
i) there are too few bits available in the object header to con-
veniently implement forwarding and address-based hashing;
ii) CRuby implements object capacity by reporting the size of
the free list cell containing the object to the language level,
thereby exposing implementation details, which is limiting;
and iii) CRuby’s use of zombie objects prevents timely mem-
ory reclamation. These remain as opportunities for future
improvement.

6 Conclusion

We refactored CRuby to allow it to integrate third-party
garbage collector implementations. Our multi-year effort
addressed many challenges imposed by the CRuby runtime,
most of which can be traced back to CRuby’s original decades-
old GC implementation.

Of the many lessons learned, the overarching one was
that early choices such as fixed cell sizes can lead to costly
practices such as the systematic use of off-heap memory
becoming deeply embedded in the runtime and even the
language. This leads to a vicious cycle by making it hard for
the language to retreat from the original decision, locking
a language into severely limiting design choices [15]. Put
differently, the centrality of a garbage collector to a runtime
such as CRuby, and its performance-critical role means that
unless strong and rich abstractions are implemented and
maintained, the initial GC implementation will over time
become more and more deeply integrated into the runtime,
shackling its performance to design choices that often prove
to be anachronistic.

We hope that the lessons outlined here will be useful for
Ruby developers and garbage collection researchers alike.

Kunshan Wang, Stephen M. Blackburn, Peter Zhu, and Matthew Valentine-House
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