
Peter Zhu

Rails and the Ruby Garbage Collector
How to Speed Up Your Rails App

Ruby Core Committer
Senior Developer, Shopify

blog.peterzhu.ca/assets/rails_world_2023_slides.pdf

http://blog.peterzhu.ca/assets/rails_world_2023_slides.pdf

• Garbage collectors are responsible for the entire lifecycle

of objects
• Garbage collectors perform memory allocations and

deallocations
• Garbage collectors keep track of lifetimes of objects
• Ruby is a garbage collected language

What’s a garbage collector?

blog.peterzhu.ca/assets/rails_world_2023_slides.pdf

http://blog.peterzhu.ca/assets/rails_world_2023_slides.pdf

• Objects in Ruby live in slots
• Slots are acquired from the garbage collector
• Data that doesn’t fit in the slot is allocated externally

What’s an object?

blog.peterzhu.ca/assets/rails_world_2023_slides.pdf

http://blog.peterzhu.ca/assets/rails_world_2023_slides.pdf

• Slots live in pages
• Pages are 64kb
• All the slots in a page are of the same size
• Fix sized slots avoids external fragmentation

Pages

blog.peterzhu.ca/assets/rails_world_2023_slides.pdf

http://blog.peterzhu.ca/assets/rails_world_2023_slides.pdf

• Introduced in Ruby 3.2 for Variable Width Allocation
• Pages live in size pools
• Each size pool contains pages with the same slot size
• Currently 5 size pools: 40, 80, 160, 320, 640 bytes

Size Pools

blog.peterzhu.ca/assets/rails_world_2023_slides.pdf

http://blog.peterzhu.ca/assets/rails_world_2023_slides.pdf

Size Pool 40

Size Pool 80

Size Pool 160

Size Pool 320

• Linked list of free slots called the “free list”
• An element is removed from the free list to allocate an

object

Object allocation

Array String Hash Object Object

free list

Regex

Array String Hash Object Object

free list

Regex

Hash

Array String Hash Object Object

free list

Regex

Array

Hash

• Two phases in a garbage collection cycle: mark and sweep
• In the mark phase, live objects are marked
• In the sweep phase, unmarked objects are reclaimed by

the garbage collector
• The (optional) compaction phase runs during sweeping to

reduce fragmentation
• Ruby uses a “stop-the-world” garbage collector

Garbage collection

• Marking phase traverses object references to determine

live objects
• Ruby marks objects with one of three colours:

• White for unmarked objects
• Grey for objects that are marked, but not traversed
• Black for marked and traversed objects

• At the end of marking, all unmarked objects are dead

Marking phase

Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F

Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F

Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F

Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F

Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F

Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F

Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F

Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F

Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F

• Ruby uses a generational garbage collector
• Objects are either transient or immortal
• Newly created objects are in the young generation
• Long lived objects are promoted to the old generation
• Minor garbage collection cycles mark only young objects
• Major garbage collection cycles mark all objects

Generational garbage collector

Root Objects

Object A
(young)

Object B
(young)

Object C
(old)

Object G
(young)

Object D
(young)

Object E
(old)

Object H
(old)

Object I
(old)

Object F
(old)

Root Objects

Object A
(young)

Object B
(young)

Object C
(old)

Object G
(young)

Object D
(young)

Object E
(old)

Object H
(old)

Object I
(old)

Object F
(old)

Root Objects

Object A
(young)

Object B
(young)

Object C
(old)

Object G
(young)

Object D
(young)

Object E
(old)

Object H
(old)

Object I
(old)

Object F
(old)

Root Objects

Object A
(young)

Object B
(young)

Object C
(old)

Object G
(young)

Object D
(young)

Object E
(old)

Object H
(old)

Object I
(old)

Object F
(old)

Root Objects

Object A
(young)

Object B
(young)

Object C
(old)

Object G
(young)

Object D
(young)

Object E
(old)

Object H
(old)

Object I
(old)

Object F
(old)

Root Objects

Object A
(young)

Object B
(young)

Object C
(old)

Object G
(young)

Object D
(young)

Object E
(old)

Object H
(old)

Object I
(old)

Object F
(old)

• What if we add a reference from an old object to a young object?
• Need write barriers
• Old object is placed in the remember set
• Remember set marked during minor garbage collection cycles

• Objects that don’t support write barriers are called “write barrier

unprotected”
• What about write barrier unprotected objects?

• Also placed in the remember set

Generational GC challenges

Root Objects

Object A
(old)

Object B
(old)

Object C
(old)

Object G
(old)

Object D
(young)

Object E
(old)

Object H
(WB unprotected)

Object I
(young)

Object F
(old)

Object J
(young)

Root Objects

Object A
(old)

Object B
(old)

Object C
(old)

Object G
(old)

Object D
(young)

Object E
(old)

Object H
(WB unprotected)

Object I
(young)

Remember Set

Object F
(old)

Object J
(young)

Root Objects

Object A
(old)

Object B
(old)

Object C
(old)

Object G
(old)

Object D
(young)

Object E
(old)

Object H
(WB unprotected)

Object I
(young)

Remember Set

Object J
(young)

Object F
(old)

Root Objects

Object A
(old)

Object B
(old)

Object C
(old)

Object G
(old)

Object D
(young)

Object E
(old)

Object H
(WB unprotected)

Object I
(young)

Object F
(old)

Remember Set

Object J
(young)

Root Objects

Object A
(old)

Object B
(old)

Object C
(old)

Object G
(old)

Object D
(young)

Object E
(old)

Object H
(WB unprotected)

Remember Set

Object J
(young)

Object F
(old)

Object I
(young)

Root Objects

Object A
(old)

Object B
(old)

Object C
(old)

Object G
(old)

Object D
(young)

Object E
(old)

Object H
(WB unprotected)

Object I
(young)

Object F
(old)

Remember Set

Object J
(young)

Root Objects

Object A
(old)

Object B
(old)

Object C
(old)

Object G
(old)

Object D
(young)

Object E
(old)

Object H
(WB unprotected)

Object I
(young)

Object F
(old)

Remember Set

Object J
(young)

Root Objects

Object A
(old)

Object B
(old)

Object C
(old)

Object G
(old)

Object D
(young)

Object E
(old)

Object H
(WB unprotected)

Object I
(young)

Object F
(old)

Remember Set

Object J
(young)

• Marking phase determined the liveliness of every object
• Unmarked objects are dead
• Sweeping phase frees the resources of all dead objects

Sweeping phase

Object A Empty Empty Object C Empty Empty

Empty Empty Object E Empty Empty Object G

Heap Page 1

Heap Page 2

Object B Object D

Object F

• Reduces fragmentation in the Ruby heap by moving

objects
• Moves objects to the optimal size
• Optional and can be enabled by calling GC.compact or

setting GC.auto_compact = true

Compaction phase

blog.peterzhu.ca/notes-on-ruby-gc/

http://blog.peterzhu.ca/notes-on-ruby-gc/

Collecting metrics

GC tuning

• Less pressure on the garbage collector
• Faster marking and sweeping phases
• Find and optimize controllers that allocates lots of objects

Decreasing object allocations

• Reduce the number of major garbage collection cycles
• Reduce GC cycles at boot using

RUBY_GC_HEAP_{0,1,2,3,4}_INIT_SLOTS (3.3+) or

RUBY_GC_HEAP_INIT_SLOTS environment variable
• Increase RUBY_GC_OLDMALLOC_LIMIT and

RUBY_GC_OLDMALLOC_LIMIT_MAX environment variables

Reducing garbage collection cycles

• Runs GC between requests
• Difficult to run on threaded web servers (e.g. Puma with

multiple threads)
• Tricky to implement optimally
• Could decrease capacity if ran too frequently
• Ineffective if not ran often enough

Out-of-band garbage collector

Impacts of GC tuning

GC improvements in
Ruby 3.3

https://github.com/ruby/ruby/pull/7577

https://github.com/ruby/ruby/pull/7577

https://github.com/ruby/ruby/pull/7821

https://github.com/ruby/ruby/pull/7821

railsatscale.com/2023-08-08-two-garbage-
collection-improvements-made-our-

storefronts-8-faster/

http://railsatscale.com/2023-08-08-two-garbage-collection-improvements-made-our-storefronts-8-faster/
http://railsatscale.com/2023-08-08-two-garbage-collection-improvements-made-our-storefronts-8-faster/
http://railsatscale.com/2023-08-08-two-garbage-collection-improvements-made-our-storefronts-8-faster/

The autotuner gem

github.com/Shopify/autotuner

http://github.com/Shopify/autotuner

Untuned

Untuned

ExperimentalTuning A

Untuned

Experimental

Stable

Tuning ATuning A

Untuned

Experimental

Stable

Tuning A

Tuning A

Untuned

Experimental

Stable

Tuning A

Tuning A

Tuning B

Untuned

Experimental

Stable

Tuning A

Tuning A

Tuning C

Untuned

Experimental

Stable

Tuning A

Tuning A

Tuning CTuning C

Untuned

Experimental

Stable

Tuning A

Tuning A

Tuning C

Tuning C

Untuned

Experimental

Stable

Tuning A

Tuning A

Tuning C

Tuning C

Tuning E

Untuned

Experimental

Stable

Tuning A

Tuning A

Tuning C

Tuning C

Tuning ETuning E

Untuned

Experimental

Stable

Tuning A

Tuning A

Tuning C

Tuning C

Tuning E

Tuning E

Tuned

Tuning A Tuning C Tuning E

Thank You

@peterzhu2118

📧 peter@peterzhu.ca

github.com/Shopify/autotuner

http://github.com/Shopify/autotuner

