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• Garbage collectors are responsible for the entire lifecycle 

of objects 
• Garbage collectors perform memory allocations and 

deallocations 
• Garbage collectors keep track of lifetimes of objects 
• Ruby is a garbage collected language

What’s a garbage collector?
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• Objects in Ruby live in slots 
• Slots are acquired from the garbage collector 
• Data that doesn’t fit in the slot is allocated externally

What’s an object?
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• Slots live in pages 
• Pages are 64kb 
• All the slots in a page are of the same size 
• Fix sized slots avoids external fragmentation

Pages

blog.peterzhu.ca/assets/rails_world_2023_slides.pdf

http://blog.peterzhu.ca/assets/rails_world_2023_slides.pdf


• Introduced in Ruby 3.2 for Variable Width Allocation 
• Pages live in size pools 
• Each size pool contains pages with the same slot size 
• Currently 5 size pools: 40, 80, 160, 320, 640 bytes

Size Pools
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Size Pool 80
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Size Pool 320



• Linked list of free slots called the “free list” 
• An element is removed from the free list to allocate an 

object 

Object allocation
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• Two phases in a garbage collection cycle: mark and sweep 
• In the mark phase, live objects are marked 
• In the sweep phase, unmarked objects are reclaimed by 

the garbage collector 
• The (optional) compaction phase runs during sweeping to 

reduce fragmentation 
• Ruby uses a  “stop-the-world” garbage collector

Garbage collection



• Marking phase traverses object references to determine 

live objects 
• Ruby marks objects with one of three colours: 

• White for unmarked objects 
• Grey for objects that are marked, but not traversed 
• Black for marked and traversed objects 

• At the end of marking, all unmarked objects are dead

Marking phase



Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F



Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F



Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F



Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F



Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F



Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F



Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F



Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F



Root Objects

Object A Object B Object C

Object GObject D

Object E

Object H

Object I

Object F



• Ruby uses a generational garbage collector 
• Objects are either transient or immortal 
• Newly created objects are in the young generation 
• Long lived objects are promoted to the old generation 
• Minor garbage collection cycles mark only young objects 
• Major garbage collection cycles mark all objects

Generational garbage collector
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• What if we add a reference from an old object to a young object? 
• Need write barriers 
• Old object is placed in the remember set 
• Remember set marked during minor garbage collection cycles 

• Objects that don’t support write barriers are called “write barrier 

unprotected” 
• What about write barrier unprotected objects? 

• Also placed in the remember set

Generational GC challenges
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• Marking phase determined the liveliness of every object 
• Unmarked objects are dead 
• Sweeping phase frees the resources of all dead objects

Sweeping phase
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• Reduces fragmentation in the Ruby heap by moving 

objects 
• Moves objects to the optimal size 
• Optional and can be enabled by calling GC.compact or 

setting GC.auto_compact = true

Compaction phase
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Collecting metrics











GC tuning



• Less pressure on the garbage collector 
• Faster marking and sweeping phases 
• Find and optimize controllers that allocates lots of objects

Decreasing object allocations



• Reduce the number of major garbage collection cycles 
• Reduce GC cycles at boot using   

RUBY_GC_HEAP_{0,1,2,3,4}_INIT_SLOTS (3.3+) or 

RUBY_GC_HEAP_INIT_SLOTS environment variable 
• Increase RUBY_GC_OLDMALLOC_LIMIT and 

RUBY_GC_OLDMALLOC_LIMIT_MAX environment variables

Reducing garbage collection cycles



• Runs GC between requests 
• Difficult to run on threaded web servers (e.g. Puma with 

multiple threads) 
• Tricky to implement optimally 
• Could decrease capacity if ran too frequently 
• Ineffective if not ran often enough

Out-of-band garbage collector



Impacts of GC tuning







GC improvements in 
Ruby 3.3
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https://github.com/ruby/ruby/pull/7821
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The autotuner gem
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Thank You

@peterzhu2118

📧 peter@peterzhu.ca
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