Rails and the Ruby Garbage Collector
How to Speed Up Your Rails App

Peter Zhu

Ruby Core Committer
Senior Developer, Shopify

blog.peterzhu.ca/assets/rails_ world 2023 slides.pdf

http://blog.peterzhu.ca/assets/rails_world_2023_slides.pdf

blog.peterzhu.ca/assets/rails_ world 2023 slides.pdf

What’s a garbage collector?

. Garbage collectors are responsible for the entire lifecycle
of objects

- Garbage collectors perform memory allocations and
deallocations

- Garbage collectors keep track of lifetimes of objects

- Ruby is a garbage collected language

http://blog.peterzhu.ca/assets/rails_world_2023_slides.pdf

blog.peterzhu.ca/assets/rails_ world 2023 slides.pdf

What’s an object?

- Objects in Ruby live in slots
- Slots are acquired from the garbage collector

- Data that doesn’t fit in the slot is allocated externally

http://blog.peterzhu.ca/assets/rails_world_2023_slides.pdf

blog.peterzhu.ca/assets/rails_ world 2023 slides.pdf

Pages

- Slots live in pages
. Pages are 64kb
- All the slots in a page are of the same size

- Fix sized slots avoids external fragmentation

http://blog.peterzhu.ca/assets/rails_world_2023_slides.pdf

blog.peterzhu.ca/assets/rails_ world 2023 slides.pdf

Size Pools

- Introduced in Ruby 3.2 for Variable Width Allocation
- Pages live in size pools

- Each size pool contains pages with the same slot size
. Currently 5 size pools: 40, 80, 160, 320, 640 bytes

http://blog.peterzhu.ca/assets/rails_world_2023_slides.pdf

Object allocation

- Linked list of free slots called the “free list”

- An element is removed from the free list to allocate an

object

free Hst——//

free |ist

Garbage collection

- Two phases in a garbage collection cycle: mark and sweep

- In the mark phase, live objects are marked

- In the sweep phase, unmarked objects are reclaimed by

the garbage collector

. The (optional) compaction phase runs during sweeping to

reduce fragmentation

- Ruby uses a “stop-the-world” garbage collector

Marking phase

- Marking phase traverses object references to determine
live objects

- Ruby marks objects with one of three colours:

- White for unmarked objects

- Grey for objects that are marked, but not traversed

- Black for marked and traversed objects

- At the end of marking, all unmarked objects are dead

Object A

Object D

Root Objects

Object B

Object F

Object C

Object E

Object G

Object |

Object H

Object A

Object D

Root Objects

Object B

Object F

Object C

Object E

Object G

Object |

Object H

Object A

Object D

Root Objects

Object B

Object F

Object C

Object E

Object G

Object |

Object H

Object A

Object D

Root Objects

Object F

Object B

Object C

Object E

Object G

Object |

Object H

Object A

Object D

Root Objects

Object F

Object B

Object E

Object G

Object |

Object H

Object A

Object D

Object E

Root Objects

Object B

Object G

Object |

Object H

Object A

Object D

Object E

Root Objects

Object |

Object B

Object G

Object H

Object A

Object D

Object E

Root Objects

Object |

Object B

Object G

Object H

Object A

Object D

Object E

Object |

Root Objects

Object B

Object G

Object H

Generational garbage collector

- Ruby uses a generational garbage collector

- Objects are either transient or immortal

- Newly created objects are in the young generation

- Long lived objects are promoted to the old generation

- Minor garbage collection cycles mark only young objects

- Major garbage collection cycles mark all objects

Object A
(young)

Object D
(young)

Root Objects

Object B
(young)

Object F
(old)

Object C
(old)

Object E
(old)

Object G
(young)

Object |
(old)

Object H
(old)

Object A
(young)

Root Objects

Object D
(young)

Object F
(old)

Object B
(young)

Object G
(young)

Object H
(old)

Object A
(young)

Root Objects

Object D
(young)

Object F
(old)

Object B
(young)

Object G
(young)

Object H
(old)

Root Objects

Object B
(young)

Object G
(young)

Root Objects

Object G
(young)

Root Objects

Generational GC challenges

- What if we add a reference from an old object to a young object?
- Need write barriers

- Old object is placed in the remember set

- Remember set marked during minor garbage collection cycles

- Objects that don’t support write barriers are called “write barrier

unprotected”
- What about write barrier unprotected objects?

- Also placed in the remember set

Object A
(old)

Object D
(young)

Root Objects

Object B
(old)

Object F
(old)

Object C
(old)

Object E
(old)

Object G
(old)

Object |
(young)

Object H
(WB unprotected)

Object J
(young)

Object A
(old)

Object D
(young)

Root Objects

Remember Set

Object B
(old)

Object F
(old)

Object C
(old)

Object E
(old)

Object G
(old)

Object |
(young)

Object H
(WB unprotected)

Object J
(young)

Root Objects

Remember Set

Object H
(WB unprotected)

Object J
(young)

Object D
(young)

Root Objects

Remember Set

Object F
(old)

Object |
(young)

Object H
(WB unprotected)

Object J
(young)

Root Objects

Remember Set

Object |
(young)

Object H
(WB unprotected)

Object J
(young)

Root Objects

Remember Set

Object |
(young)

Object H
(WB unprotected)

Object J
(young)

Root Objects
Remember Set

Object H
(WB unprotected)

Object J
(young)

Root Objects
Remember Set

Object H
(WB unprotected)

Sweeping phase

- Marking phase determined the liveliness of every object
- Unmarked objects are dead

. Sweeping phase frees the resources of all dead objects

Heap Page 1

Object A Object B Empty Object C Empty Object D

Heap Page Z

Empty Empty

Object E Object F Empty Object G

Compaction phase

. Reduces fragmentation in the Ruby heap by moving

objects
- Moves objects to the optimal size
- Optional and can be enabled by calling GC.compact or

setting GC.auto_compact = true

blog.peterzhu.ca/notes-on-ruby-gc/

http://blog.peterzhu.ca/notes-on-ruby-gc/

Collecting metrics

‘:main):®®1> .stat

{:count=22,
ctime=21,
:marking time=14,

:sweeplng _time=7,

. Néea
. Néea
. Néea
. Néea
. Néea
. Néea
. Néea
. Néea
. Néea

. Néea

D _allocated _pages=64,

0 _sorted _length=217,

D _allocatable _pages=153,
0 _avallable slots=59542,
live slots=50593,

free slots=8949,

final slots=0,

D marked slots=38655,

D _eden_pages=64,

D _tomb_pages=0,

:total _allocated pages=64,

:total _freed pages=0,

:total _allocated objects=216590,
:total _freed objects=165997,
:malloc_1ncrease_bytes=375744,
:malloc_1increase_bytes 1li1mit=16777216,
:m1nor_gc_count=17,

:major_gc_count=5,

:compact_count=0,

:read barrier faults=0,

:total_moved _objects=0,

: remembered_wb_unprotected objects=0,

bered _wb_unprotected objects limit=325,
bjects=36174,

bjects _1l1imit=65172,

ldmalloc_increase _bytes=1653024,
ldmalloc_increase_bytes 1imit=16777216}

irb(main):001> .stat
{:count=22,
ctime=21,

drrking time=14,
neeplng time=7,

. Néea
. Néea
. Néea
. Néea
. Néea
. Néea
. Néea
. Néea
. Néea

. Néea

D _allocated _pages=64,

0 _sorted _length=217,

D _allocatable _pages=153,
0 _avallable slots=59542,
live slots=50593,

free slots=8949,

final slots=0,

D marked slots=38655,

D _eden_pages=64,

D _tomb_pages=0,

:total _allocated pages=64,

:total _freed pages=0,

:total _allocated objects=216590,
:total _freed objects=165997,
:malloc_1ncrease_bytes=375744,
:malloc_1increase_bytes 1li1mit=16777216,
:m1nor_gc_count=17,

:major_gc_count=5,
:compact_count=0,
:read barrier faults=0,

:total_moved _objects=0,

: remembered_wb_unprotected objects=0,

bered _wb_unprotected objects limit=325,
bjects=36174,

bjects _1l1imit=65172,

ldmalloc_increase _bytes=1653024,
ldmalloc_increase_bytes 1imit=16777216}

irb(main):001> .stat
{:count=22,
ctime=21,
:marking time=14,

:sweeplng _time=7,

. Néea
. Néea
. Néea
. Néea
. Néea
. Néea
. Néea
. Néea
. Néea

. Néea

D _allocated _pages=64,

0 _sorted _length=217,

D _allocatable _pages=153,
0 _avallable slots=59542,
live slots=50593,

free slots=8949,

final slots=0,

D marked slots=38655,

D _eden_pages=64,

D _tomb_pages=0,

:total _allocated pages=64,

otal freed pages=0,

:total _allocated objects=216590,
:total _freed objects=165997,
:malloc_1ncrease_bytes=375744,
:malloc_1increase_bytes 1li1mit=16777216,
:m1nor_gc_count=17,

:major_gc_count=5,

:compact_count=0,

:read barrier faults=0,

:total_moved _objects=0,

: remembered_wb_unprotected objects=0,

bered _wb_unprotected objects limit=325,
bjects=36174,

bjects _1l1imit=65172,

ldmalloc_increase _bytes=1653024,
ldmalloc_increase_bytes 1imit=16777216}

1=
{:slot size=380,
:heap _allocatable pages=0,

in):001> .stat_heap

:heap_eden_pages=13,
:heap_eden_slots=10641,

{:slot size=40,
:heap _tomb_pages=0,

:heap_allocatable _pages=0,

:heap _tomb_slots=0,

:total _allocated pages=13,
:total _freed pages=0,
:force _major_gc _count=0,

:heap_eden_pages=?29,

:heap eden slots=47484,
:heap _tomb_pages=0,

:heap tomb slots=0,

:total _allocated pages=29,
:total freed pages=0,
:force_major_gc_count=3,

:force_1ncremental _marking finish _count=0,
:total _allocated objects=67019,
:total _freed objects=58229},

:force_1incremental _marking finish _count=0,
:total _allocated objects=187549,
:total _freed objects=146553},

b
i

b}

GC tuning

Decreasing object allocations

- Less pressure on the garbage collector
- Faster marking and sweeping phases

- Find and optimize controllers that allocates lots of objects

Reducing garbage collection cycles

- Reduce the number of major garbage collection cycles

. Reduce GC cycles at boot using

RUBY GC_HEAP_{0,1,2,3,4} INIT_SLOTS (3.3+) or

RUBY GC HEAP_INIT SLOTS environment variable

- Increase RUBY GC OLDMALLOC LIMIT and

RUBY GC OLDMALLOC LIMIT MAX environment variables

Out-of-band garbage collector

+ Runs GC between requests

- Difficult to run on threaded web servers (e.g. Puma with
multiple threads)

- Tricky to implement optimally

- Could decrease capacity if ran too frequently

- Ineffective if not ran often enough

Impacts of GC tuning

Ratio of Average GC Time for Tuned vs Untuned

0.6 x

0.55 x

0.5x

0.45 x

0.4 x

0.35 x

16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30
Mean ~

== tuned / untuned 0.454 x

Ratio of p99 GC Time for Tuned vs Untuned

0.325 x
0.3 x
0.275 x
0.25 x
0.225 x
0.2 x
0.175 x

0.15 x

16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30
Mean -

== tuned / untuned 0.201 x

Ratio of Average Response Time for Tuned vs Untuned

1.05 x

Tx

0.95 x

0.9 x

0.85 x

0.8 x

16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30
Mean ~

== tuned / untuned 0.867 x

Ratio of p99 Response Time for Tuned vs Untuned

0.9 x

0.8 x

0.7 x

0.6 x

0.5x

0.4 x
16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30
Mean ~

== tuned / untuned 0.749 x

GC improvements in
Ruby 3.3

O Search or jump to... Pull requests Issues Codespaces Marketplace Explore

H ruby / ruby Public s EditPins ~ & Watch 1.1k ~ % Fork 5.4k v Starred 20.8k v

<> Code {9 Pull requests 395 () Actions [wiki @ Security 17 |~ Insights

[Feature #19571] Add
REMEMBERED_WB_UNPROTECTED_OBJECTS_LIMIT_RATIO to the GC Edit <> Code -

#7577

ol G- peterzhu2118 merged 1 commit into ruby:master from Shopify:pz-uncol-wb-unpro-obj-lim-ratio (0] on May 24

L) Conversation 0 -0- Commits 1 [F) Checks 96 Files changed 2 +19 -1 HEEE

@ peterzhu2118 commented on Mar 21 - edited ~ Member = <-° Reviewers 83

No reviews
The proposed PR adds the environment variable RUBY_GC_HEAP_REMEMBERED_WB_UNPROTECTED_OBJECTS_LIMIT_RATIO which is

used to calculate the remembered_wb_unprotected_objects_limit using a ratio of old_objects . This should improve

performance by reducing major GC because, in a major GC, we mark all of the old objects, so we should have more Assignees i3
uncollectible WB unprotected objects before starting a major GC. The default has been set to 0.01 (1% of old objects). No one—assign yourself

On one of Shopify's highest traffic Ruby apps, Storefront Renderer, we saw significant improvements after deploying this

patch in production. In the graphs below, we have the tuned group which uses Labels o
RUBY_GC_HEAP_REMEMBERED_WB_UNPROTECTED_OBJECTS_LIMIT_RATIO=0.01 (the default value), and an untuned group, which None yet

turns this feature off with RUBY_GC_HEAP_REMEMBERED_WB_UNPROTECTED_OBJECTS_LIMIT RATIO=0 . We see that the tuned

group spends significantly less time in GC, on average 0.67x of the time compared to the untuned group and 0.49x for Milestone 3

p99. We see this improvement in GC time translate to improvements in response times. The average response time is now

0.96x of the time compared to the untuned group and 0.86x for p99. No milestone

Ratio of Average GC Time for Tuned vs Untuned Ratio of p99 GC Time for Tuned vs Untuned

Notifications Customize

12x 15 . & Unsubscribe

v ~ , ‘ You're receiving notifications because you modified
osx RN ' : A/ AN\ o YN~ L adn | U e et ' ‘ the open/close state.

0.2x | 0.25 x

03/3116:00 04/0100:00 04/0108:00 04/0116:00 04/0200:00 04/0208:00 04/0216:00 04/03 00:00 04/03 08:00 03/3116:00 04/0100:00 04/0108:00 04/0116:00 04/02 00:00 04/02 08:00 04/0216:00 04/03 00:00 04/03 08:00 1 pa rtiCipa nt
Mean ~ Mean ~

== tuned / untuned 0.673 x == tuned / untuned 0.494 x
QO

https://github.com/ruby/ruby/pull/ 7577

1.4 X

1.2 x

1x

0.8 x

0.6 x

0.4 x

0.2 x

0x
03/3116:00

== tuned / untuned

11 x

1x

0.9 x

0.8 x

0.7 x

03/3116:00

== tuned / untuned

04/01 00:00

04/01 00:00

Ratio of Average GC Time for Tuned vs Untuned

04/01 08:00 04/0116:00 04/02 00:00 04/02 08:00 04/0216:00

Ratio of Average Response Time for Tuned vs Untuned

04/0108:00 04/0116:00 04/02 00:00 04/02 08:00 04/0216:00

04/03 00:00

04/03 00:00

Ratio of p99 GC Time for Tuned vs Untuned

1.75 X
1.5 x
1.25 x
1x

0.75 x

0.5x

0.25x

0 x

04/0216:00 04/03 00:00 04/03 08:00

Mean ~

0.494 x

04/03 08:00 04/0100:00 04/0108:00 04/0116:00 04/02 00:00 04/02 08:00

Mean ~

0.673 X

03/3116:00

== tuned / untuned

Ratio of p99 Response Time for Tuned vs Untuned

1x
0.95 x
0.9 x
0.85 x

0.8 x

0.75 x

0.7 X

04/03 00:00 04/03 08:00

Mean -~

0.859 x

04/03 08:00 04/0100:00 04/0108:00 04/0116:00 04/02 00:00 04/0208:00 04/02 16:00

Mean ~

0.961 x

03/3116:00

== tuned / untuned

https://github.com/ruby/ruby/pull/ 7577

O Search or jump to... Pull requests Issues Codespaces Marketplace Explore

H ruby / ruby Public s EditPins ~ & Watch 1.1k ~ % Fork 5.4k v Starred 20.8k v

<> Code {9 Pull requests 395 () Actions [wiki @ Security 17 |~ Insights

[Feature #196/8] Don't immediately promote children of old objects # /821 Fdit | <> Code ~

xRVl peterzhu2118 merged 1 commit into ruby:master from Shopify:pz-delay-promo-always (L] on May 25
() Conversation 6 -0- Commits 1 [F]l Checks 93 Files changed 2 +48 -78 HEEN

Reviewers

@ byroot

@ peterzhu2118 commented on May 17 Member

&

Alternative implementation of #7683 where the feature is always enabled.

References from an old object to a write barrier protected young object will not immediately promote the young object. Assignees £33
Instead, the young object will age just like any other object, meaning that it has to survive three collections before being
promoted to the old generation. References from an old object to a write barrier unprotected object will place the parent
object in the remember set for marking during minor collections. This allows the child object to be reclaimed in minor

collections at the cost of increased time for minor collections. Labels %3

No one—assign yourself

None yet
On one of Shopify's highest traffic Ruby apps, Storefront Renderer, we saw significant improvements after deploying this

feature in production. We compare the GC time and response time of web workers that have the original behaviour (non-

experimental group) and this new behaviour (experimental group). We see that with this feature we spend significantly Milestone o
less time in the GC, 0.81x on average, 0.88x on p99, and 0.45x on p99.9. No milestone
This translates to improvements in average response time (0.96x) and p99 response time (0.92x).

Notifications Customize
© @1 (#4 N Unsubscribe

You're receiving notifications because you modified

a Ha the open/close state.
0 byroot approved these changes on May 18 View reviewed changes

3 participants

byroot left a comment Member E« - g
v
@ [5 Lock conversation

https://github.com/ruby/ruby/pull/ 7821

Ratio of Average GC Time for Experimental vs. Non-Experimental

1x
0.95 x
0.9 x
0.85 x
0.8 x
0.75 x
0.7 x
0.65 x
13:00 14:00 15:00 16:00 19:00 20:00

17:00 18:00

== experimental / non-experimental

Ratio of Average Response Time for Experimental vs. Non-Experimental

1.05 x

1x

0.95 x

0.9 x

0.85 x

0.8 x

13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

== experimental / non-experimental

Ratio of p99 GC Time for Experimental vs. Non-Experimental

1.2 x
1x
0.8 x
0.6 x
0.4 x
0.2 x
21:00 22:00 23:00 00:00 01:00 02:00 03:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00
Mean ~ Mean ~
0.810 x == experimental / non-experimental 0.880 x
Ratio of p99 Response Time for Experimental vs. Non-Experimental
1x
0.9 x
0.8 x
0.7 x
0.6 x
21:00 22:00 23:00 00:00 01:00 02:00 03:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00
Mean ~ Mean -~
0.961 x == experimental / non-experimental 0.920 x

https://github.com/ruby/ruby/pull/ 7821

railsatscale.com/2023-08-08-two-garbage-
collection-improvements-made-our-
storefronts-8-taster/

http://railsatscale.com/2023-08-08-two-garbage-collection-improvements-made-our-storefronts-8-faster/
http://railsatscale.com/2023-08-08-two-garbage-collection-improvements-made-our-storefronts-8-faster/
http://railsatscale.com/2023-08-08-two-garbage-collection-improvements-made-our-storefronts-8-faster/

The autotuner gem

github.com/Shopify/autotuner

http://github.com/Shopify/autotuner

Quick start

1. Open the config.ru file in your Rails app and add the following line immediately above
run(Rails.application) :

use(Autotuner: :RackPlugin)

2. Create an initializer in config/initializers/autotuner.rb :

Enable autotuner. Alternatively, call Autotuner.sample_ratio= with a value
between 0 and 1.0 to sample on a portion of instances.
Autotuner.enabled = true

This callback is called whenever a suggestion is provided by this gem.
You can output this report to your logging pipeline, stdout, a file,
or somewhere else!
Autotuner.reporter = proc do |report]

Rails. logger.info(report.to_s)
end

This (optional) callback is called to provide metrics that can give you
insights about the performance of your app. It's recommended to send this
data to your observability service (e.g. Datadog, Prometheus, New Relic, etc).
Autotuner.metrics_reporter = proc do |metrics|

stats is a hash of metric name (string) to integer value.

metrics.each do |key, val|

StatsD.gauge(key, val)

end

end

autotuner: The following suggestions reduces the number of minor garbage collection cycles, specifically
a cycle called "malloc". Your app runs malloc cycles in approximately 62.50% of all minor garbage collection
cycles.

Reducing minor garbage collection cycles can help reduce response times. The following tuning values aims to
reduce malloc garbage collection cycles by setting it to a higher value. This may cause a slight increase in
memory usage. You should monitor memory usage carefully to ensure your app 1s not running out of memory.

Suggested tuning values:
RUBY_GC_MALLOC_LIMIT=67108864 (configured value: 33554432)
RUBY_GC_MALLOC_LIMIT_MAX=134217728 (configured value: 67108864)

It 1s always recommended to experiment with these suggestions as some suggestions may not always yield
positive performance improvements. The recommended method is to perform A/B testing where a portion of
traffic does not have the these suggested values and a portion of traffic with these suggested values.

Thank You

O github.com/Shopify/autotuner

) @peterzhu2118

- peter@peterzhu.ca

http://github.com/Shopify/autotuner

