
Optimizing Ruby’s
Memory Layout

Peter Zhu
Ruby Core Committer

Production Engineer, Shopify

Matt

Valentine-House

Senior Developer, Shopify

How does Ruby
manage memory?

RVALUE structure

RVALUE 40 bytesRStringRArrayRClass

Ruby Object Structure

RClassflags klass RClass specific fields

• Heap pages are a container for a 16Kb memory region

• 409 slots per page

• All slots on the same page are contiguous. No gaps in addresses

Heap page structure

Heap page structure

Heap Page T_NONE

0

next

T_NONE

40

next

T_NONE

80

next

T_NONE

120

next

T_NONE

160

next

T_NONE

200

next

T_NONE

240

next

Building the freelist

T_NONE T_NONE T_NONE T_NONE T_NONE T_NONE T_NONEHeap Page

80 120 160 200 240

next next next next next next next

freelist

0 40

Allocating Ruby objects

T_NONE T_NONE T_NONE T_NONE T_NONE T_NONE T_NONEHeap Page

80 120 160 200 240

next next next next next next next

freelist

0 40

RClassRStringRArrayRStringRStringRHashRClass

How does Ruby’s
Garbage Collector work?

Ruby’s garbage collector

Execute Ruby code Mark Sweep Compact Execute Ruby code

Time

• Three phases:

• Marking

• Sweeping

• Compaction (optional)

• Stop-the-world garbage collection

• Disclaimer: algorithms are simplified and some details are skipped

• Determines which Ruby objects are alive

• Push the object onto the mark stack when marked

• Recursively mark unmarked children of marked objects until empty

Marking phase

Execute Ruby code Mark Sweep Compact Execute Ruby code

Time

Marking example

D E

F G H I J

Heap
page 1

Heap
page 2

Mark stack
Roots

AA BB CBA

Marking

Marking example

D E

F G H I J

Heap
page 1

Heap
page 2

Mark stack
Roots

A
B

B C

Marking
A

CC

Marking example

D E

F H I J

Heap
page 1

Heap
page 2

Mark stack
Roots

A B C

Marking

C

GGG

B

Marking example

D E

F H I J

Heap
page 1

Heap
page 2

Mark stack
Roots

A B C

Marking

G

G

C

Marking example

D E

I J

Heap
page 1

Heap
page 2

Mark stack
Roots

A B C

Marking

GF HF HHF

G

Marking example

D E

I J

Heap
page 1

Heap
page 2

Mark stack
Roots

A B C

Marking

GF H

F

H

Marking example

D E

I J

Heap
page 1

Heap
page 2

Mark stack
Roots

A B C

Marking

GF H

H

• Marked objects = live objects

• Unmarked objects = dead objects

• Scan pages and free objects that are not marked

Sweeping phase

Execute Ruby code Mark Sweep Compact Execute Ruby code

Time

Sweeping example

E

I J

Heap
page 1

Heap
page 2

A B C

GF H

D

Sweeping example

I J

Heap
page 1

Heap
page 2

A B C

GF H

E

Sweeping example

J

Heap
page 1

Heap
page 2

A B C

GF H I

Sweeping example

Heap
page 1

Heap
page 2

A B C

GF H J

• Optional phase & turned off by default

• Move objects to compact the heap

• Can reduce memory usage

• Ruby uses a Two-Finger compaction algorithm

Compact phase

Execute Ruby code Mark Sweep Compact Execute Ruby code

Time

• Compact step:

• Two cursors: compact and free

• Free cursor moves forward and compact cursor moves backward

• Update reference step: update pointers for all objects

Compaction algorithm

Execute Ruby code Mark Sweep Compact Execute Ruby code

Time

Compaction example

Heap
page 1

Heap
page 2

A B C

GF Moved
to 1

0 2 3 4 5 6

7 8 9 10 12 13
H

11

11

Compaction example

Heap
page 1

Heap
page 2

A B C

F Moved
to 1

0 2 3 5 6

7 9 10 12 13

H

11

1

Moved
to 4G

8

44

Moved
to 5

Compaction example

G
Heap

page 1

Heap
page 2

A B C

Moved
to 1

0 2 3 6

9 10 12 13

H

11

1

Moved
to 4

Moved
to 4

8

4

F

55

7

Moved
to 5

Compaction example

G F
Heap

page 1

Heap
page 2

A B C

Moved
to 1

0 2 3 6

9 10 12 13

H

11

1

Moved
to 4

Moved
to 4

8

4

Moved
to 5

5

7

Moved
to 5

Compaction example

G F
Heap

page 1

Heap
page 2

A B C

Moved
to 1

0 2 3 6

9 10 12 13

H

11

1

Moved
to 4

Moved
to 4

8

4

Moved
to 5

5

7

Moved
to 5

Compaction example

G F
Heap

page 1

Heap
page 2

A B C

Moved
to 1

0 2 3 6

9 10 12 13

H

11

1

Moved
to 4

Moved
to 4

8

4

Moved
to 5

5

7

Moved
to 5

Compaction example

G F
Heap

page 1

Heap
page 2

A B C

Moved
to 1

0 2 3 6

9 10 12 13

H

11

1

Moved
to 4

Moved
to 4

8

4

Moved
to 5

5

7

Moved
to 5

Compaction example

G F
Heap

page 1

Heap
page 2

A B C

Moved
to 1

0 2 3 6

9 10 12 13

H

11

1

Moved
to 4

8

4 5

77 8 11

Large objects on the
heap

Two different categories of Strings

12 bytes

37 bytes“Hello RubyKaigi, thanks for having us”

“Hello, World”

• < 24 bytes

• > 24 bytes

Allocating an embedded string

Heap Page T_NONE T_NONE T_NONE

12 bytes

37 bytes“Hello RubyKaigi, thanks for having us”

RString

“Hello, World”

0 40 80

< RSTRING_EMBED_LEN_MAX == TRUE

Allocating a heap allocated string

Heap Page T_NONE T_NONE T_NONE

37 bytes“Hello RubyKaigi, thanks for having us”

RString

“Hello, World”
RString

flags | NOEMBED

malloc()800:

ptr:

800

0 40 80

< RSTRING_EMBED_LEN_MAX == FALSE

• How Ruby lays out it’s memory.

• How large and small objects are allocated

• What garbage collection is for, and how it works

Summary: What we’ve learned

What problems are
we trying to solve?

• Pointer indirection causing poor cache locality

• Performance and memory overhead caused by malloc

Bottlenecks in the heap

• Memory in the system lives in many levels:

• Level 1 cache: on CPU core, very fast

• Level 2 cache: beside CPU core, slightly slower

• Level 3 cache: shared between CPU cores, slower

• Main memory: off CPU, very slow

CPU caches

CPU caches

• CPU caches stores data fetched from main memory

• CPU caches store a cache line at a time (64 B on x86)

• Old cache entries are evicted to make space for new entries

• Cache hit: data exists in cache, no fetch from main memory

required

• Cache miss: data does not exist in cache, need to fetch from main

memory

CPU cache properties

Ruby cache performance

B Array EC DA

Ruby heap
Heap

page 1

System heap
32 bytes of data

40 bytes of data

64 bytes

64 bytes

• malloc has performance overhead

• malloc stores additional metadata, increasing memory

consumption

• Ruby 2.6+ introduced a second heap called the “transient heap”

used to reduce the number of malloc calls

• Increased performance in some benchmarks by 50%

Overhead of malloc

• Extend Ruby’s garbage collector to allow dynamic sized allocation

• Data will be allocated following the object RVALUE

• Reduce the number of malloc calls

The Variable Width Allocation project

Variable Width cache performance

B Array EC DA

Ruby heap
Heap

page 1

System heap

Variable Width cache performance

B Array EC DA

Ruby heap
Heap

page 1

System heap

32 bytes of data
40 bytes of data

64 bytes 64 bytes

Where are we today?

🚨🚨DON’T USE THIS* 🚨🚨

* on production workloads

export cflags=“-DUSE_RVARGC=1”

./configure

make

make install

RClass allocation

class MyNewClass

end

Class.new(Object)

RClass

RClass

RClass Allocation

RClass

Ruby heap
Heap

page 1

System heap rb_classext_t

• RVARGC_NEWOBJ_OF called with a desired payload size

• Object is allocated in the appropriate size pool

• Pages in size pools have different slot sizes

• Slots of size pools have powers of 2 multiples of RVALUE size

Variable Width Allocation

Size pools

Size pool 0

(Slot size: 40B)

Size pool 1

(Slot size: 80B)

Size pool 2

(Slot size: 160B)

Size pool 3

(Slot size: 320B)

Size pools

Size pool 0

(Slot size: 40B)

Size pool 1

(Slot size: 80B)

Size pool 2

(Slot size: 160B)

Size pool 3

(Slot size: 320B)

• Allocating a class requires 40B + 104B = 144B

• 144B = 3.6 x RVALUE

Allocation

Size pool 2

(Slot size: 160B)

T_NONE T_NONE T_NONEHeap Page

160

next next next

0 320

freelist

Allocation

Size pool 2

(Slot size: 160B)

T_NONE T_NONE T_NONEHeap Page

160

next next

320

freelist

next

0

T_CLASS RB_CLASSEXT_T

Benchmarks

Methodology
• Benchmarked on bare-metal Ubuntu machine on AWS

• railsbench and rdoc generation was benchmarked using the glibc

and jemalloc allocators

• See ticket for more detailed results and analysis:

 https://bugs.ruby-lang.org/issues/18045

railsbench
• 2% higher max memory usage when using glibc and jemalloc

• No significant performance change when using glibc

• 2.7% faster when using jemalloc

rdoc generation
• 13% lower memory usage than master when using glibc and

jemalloc

Liquid & optcarrot benchmarks
• No significant performance difference beyond margin of error

Limitations and
future plans

• Currently only classes are using Variable Width Allocation

• Add support for arrays and strings

VWA everywhere

• Arrays and strings can resize upwards

• Difficult problem to tackle

• One idea: allocate extra space in a larger size pool and take

advantage of compaction to move resized object

Resizing objects

• We’d like to shrink RVALUE from 40B to 32B

• Align on 64B cache line boundaries

Shrinking RVALUE

80 120 160 200 2400 40

Heap Page

64B 64B 64B 64B

• We’d like to shrink RVALUE from 40B to 32B

• Align on 64B cache line boundaries

Shrinking RVALUE

64 96 128 160 1920 32

Heap Page

64B 64B 64B 64B

224

Thanks!

